Matrix Fourier multipliers for Parseval multi-wavelet frames

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Excess of Parseval Frames

The excess of a sequence in a Hilbert space H is the greatest number of elements that can be removed yet leave a set with the same closed span. This paper proves that if F is a frame for H and there exist infinitely many elements gn ∈ F such that F \ {gn} is complete for each individual n and if there is a uniform lower frame bound L for each frame F \ {gn}, then for each ε > 0 there exists an ...

متن کامل

Expansions for Gaussian processes and Parseval frames

We derive a precise link between series expansions of Gaussian random vectors in a Banach space and Parseval frames in their reproducing kernel Hilbert space. The results are applied to pathwise continuous Gaussian processes and a new optimal expansion for fractional OrnsteinUhlenbeck processes is derived.

متن کامل

A Fundamental Identity for Parseval Frames

Frames are an essential tool for many emerging applications such as data transmission. Their main advantage is the fact that frames can be designed to be redundant while still providing reconstruction formulas. This makes them robust against noise and losses while allowing freedom in design (see, for example, [5, 10]). Due to their numerical stability, tight frames and Parseval frames are of in...

متن کامل

Moving Parseval Frames for Vector Bundles

Parseval frames can be thought of as redundant or linearly dependent coordinate systems for Hilbert spaces, and have important applications in such areas as signal processing, data compression, and sampling theory. We extend the notion of a Parseval frame for a fixed Hilbert space to that of a moving Parseval frame for a vector bundle over a manifold. Many vector bundles do not have a moving ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2013

ISSN: 1063-5203

DOI: 10.1016/j.acha.2012.11.004